[Mne_analysis] ValueError: source space does not contain any vertices for label unknown-lh
Eric Larson
larson.eric.d at gmail.com
Fri May 1 11:52:47 EDT 2020
External Email - Use Caution
It's tough to know where the error is occurring without the traceback, but
I suspect it comes from:
label_ts = mne.extract_label_time_course(
stcs, labels, inv['src'], return_generator=True)
You can add `allow_missing=True`, see documentation here
<https://mne.tools/stable/generated/mne.extract_label_time_course.html>.
Eric
On Fri, May 1, 2020 at 11:42 AM Andrade Rey René <rene.andrade at edu.uah.es>
wrote:
> External Email - Use Caution
>
> Dear experts:
> I have the issue that I put in the subject of this email. The error occurs
> when trying to execute this line.
>
>
>
> corr = mne.connectivity.envelope_correlation(label_ts, verbose=True)
>
>
>
> Below is the whole script.
>
> Sincerely,
> Andrade.
>
>
> import mne
> import os
> import numpy as np
> import matplotlib.pyplot as plt
> from mne.minimum_norm import make_inverse_operator, apply_inverse
> mne.viz.set_3d_backend('pyvista')
> trans='fsaverage'
> subject='fsaverage'
> src='/usr/local/freesurfer/subjects/fsaverage/fsaverage-oct6-src.fif'
> raw =
> mne.io.read_raw_bdf('/home/andraderenew/Downloads/meditation_arnaud_delorme/sub-001_ses-01_eeg_sub-001_ses-01_task-meditation_eeg.bdf',
> preload=True)
> events = mne.find_events(raw, stim_channel=None)
> epochs = mne.Epochs(raw, events, preload=True)
> evoked = epochs.average()
> mne.set_eeg_reference(evoked, ref_channels='average', copy=True,
> projection=True, ch_type='auto', verbose=None)
>
> cov =
> mne.read_cov('/usr/local/freesurfer/subjects/fsaverage/data_eeg_meditation_subj1_sess1/fsaverage-5120-5120-5120-cov.fif')
>
> fwd_sol =
> mne.read_forward_solution('/usr/local/freesurfer/subjects/fsaverage/data_eeg_meditation_subj1_sess1/fsaverage-5120-5120-5120-fwd.fif')
>
> inv =
> mne.minimum_norm.read_inverse_operator('/usr/local/freesurfer/subjects/fsaverage/data_eeg_meditation_subj1_sess1/fsaverage-5120-5120-5120-inv.fif')
>
> subjects_dir = '/usr/local/freesurfer/subjects/'
>
>
>
> snr = 3.
> lambda2 = 1. / snr ** 2
>
> surfer_kwargs = dict(
> hemi='lh', subjects_dir=subjects_dir,
> clim=dict(kind='value', lims=[8, 12, 15]), views='lateral',
> initial_time=0.09, time_unit='s', size=(800, 800),
> smoothing_steps=5)
>
>
> surfer_kwargs['clim'].update(kind='percent', lims=[99, 99.9, 99.99])
> for mi, method in enumerate(['MNE', 'dSPM', 'sLORETA', 'eLORETA']):
> stc = apply_inverse(evoked, inv, lambda2,
> method=method, pick_ori=None,
> verbose=True)
> peak_vertex, peak_time = stc.get_peak(hemi='lh', vert_as_index=True,
> time_as_index=True)
>
> peak_vertex_surf = stc.lh_vertno[peak_vertex]
>
> peak_value = stc.lh_data[peak_vertex, peak_time]
> brain = stc.plot(figure=mi, **surfer_kwargs)
> brain.add_foci(peak_vertex_surf, coords_as_verts=True, hemi='lh',
> color='blue')
> brain.add_text(0.1, 0.9, method, 'title', font_size=20)
> print(stc)
> # lh_coordinates = src[0]['rr'][stc.lh_vertno]
> # lh_data = stc.lh_data
> # input()
>
>
>
> labels = mne.read_labels_from_annot(subject, 'aparc',
> subjects_dir=subjects_dir)
> epochs.apply_hilbert() # faster to apply in sensor space
> stcs = mne.minimum_norm.apply_inverse_epochs(epochs, inv, lambda2=1. /
> 9., pick_ori='normal',
> return_generator=True)
> label_ts = mne.extract_label_time_course(
> stcs, labels, inv['src'], return_generator=True)
> corr = mne.connectivity.envelope_correlation(label_ts, verbose=True)
>
> # let's plot this matrix
> fig, ax = plt.subplots(figsize=(4, 4))
> ax.imshow(corr, cmap='viridis', clim=np.percentile(corr, [5, 95]))
> fig.tight_layout()
> input()
>
> threshold_prop = 0.15 # percentage of strongest edges to keep in the
> graph
> degree = mne.connectivity.degree(corr, threshold_prop=threshold_prop)
> stc = mne.labels_to_stc(labels, degree)
> stc = stc.in_label(mne.Label(inv['src'][0]['vertno'], hemi='lh') +
> mne.Label(inv['src'][1]['vertno'], hemi='rh'))
> brain = stc.plot(
> clim=dict(kind='percent', lims=[75, 85, 95]), colormap='gnuplot',
> subjects_dir=subjects_dir, views='dorsal', hemi='both',
> smoothing_steps=25, time_label='Beta band')
>
> del stc
>
> _______________________________________________
> Mne_analysis mailing list
> Mne_analysis at nmr.mgh.harvard.edu
> https://mail.nmr.mgh.harvard.edu/mailman/listinfo/mne_analysis
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://mail.nmr.mgh.harvard.edu/pipermail/mne_analysis/attachments/20200501/0459e3b3/attachment.html
More information about the Mne_analysis
mailing list