[Mne_analysis] Return Spectral Connectivity of Each Epoch {Disarmed}
balandongiv at gmail.com
balandongiv at gmail.com
Wed Nov 4 09:12:08 EST 2020
External Email - Use Caution
Dear Group,
The objective is to compute frequency connectivity measures. Say we have 70
epochs of an event with the id 1, and I would like the connectivity measures
each of the epoch.
However, I noticed the spectral_connectivity() return an average
connectivity measures value of all the 70 epochs (please correct this if I'm
wrong).
I have checked the documentation
(https://secure-web.cisco.com/1Gf0PHvuRFQv76oTm1ABAUmOVTk9MHhrw8EqhEsEaoAUypEMpA6HoZzm56S1KPbJP5SlpoAgAq2VR3Rp7Ff96ecibUq67Ro5_CpoEd2PrLVeUR9X8pll0HRaEtCw-w3Wk1yFJueGe9mvLz9JVUmRILxV_g4JI9Azx-FJHJrQMLcu7I0qOlVytQuIoXA_-3GF-oFjDMZ-OvC3PmMSoQv5Bmg/https%3A%2F%2Fmne.tools%2Fstable%2Fgenerated%2Fmne.connectivity.spectral_connectivity.h
tml#mne.connectivity.spectral_connectivity), but I did not found any related
setting to return connectivity measures value of each of the epoch.
But, the accompanying documentation
(https://secure-web.cisco.com/1VmCPK-IGvORXkRuZA4yZNNiiEmR7ZXufQjC_stjurXC4i8Xwh0vJZ1dBcYegzyFDEv7M87f0HRBInfXmTxv8FztUd5KZfX5fMG7g9cwY7knLxXULeaki34Q7TtGXFnsY9xbdh0_x9J4aeAgzqJa60AcYo5uwBnlQU4SiF9k4C1llCva-sbSd3YRweiM_wkb5NUuWka0UJQnJ6DHrcl8BBQ/https%3A%2F%2Fgithub.com%2Fmne-tools%2Fmne-python%2Fblob%2F0e080a5a645b5934445ef4da6da744
d7dfa7f68d/mne/connectivity/spectral.py#L630)
<https://secure-web.cisco.com/1VmCPK-IGvORXkRuZA4yZNNiiEmR7ZXufQjC_stjurXC4i8Xwh0vJZ1dBcYegzyFDEv7M87f0HRBInfXmTxv8FztUd5KZfX5fMG7g9cwY7knLxXULeaki34Q7TtGXFnsY9xbdh0_x9J4aeAgzqJa60AcYo5uwBnlQU4SiF9k4C1llCva-sbSd3YRweiM_wkb5NUuWka0UJQnJ6DHrcl8BBQ/https%3A%2F%2Fgithub.com%2Fmne-tools%2Fmne-python%2Fblob%2F0e080a5a645b5934445ef4da6da744
d7dfa7f68d/mne/connectivity/spectral.py#L630)> not explicitly mention `
con` will be the average value of all epoch. This leads me to believe that
the function can return the connectivity measures value of each of the
epoch. Appreciate for confirmation about this issue.
Code example lead to the above observation is as below:
import mne
from mne import io
from mne.connectivity import spectral_connectivity
from mne.datasets import sample
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
raw = io.read_raw_fif(raw_fname)
events = mne.read_events(event_fname)
ch_names = raw.info['ch_names']
picks = mne.pick_channels(ch_names=ch_names,include=['EEG 001','EEG
002','EEG 003'])
event_id, tmin, tmax = 1, -10, 0
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks)
fmin, fmax = (1.,5.),(4.,9.)
sfreq = raw.info['sfreq'] # the sampling frequency
tmin = 0 # exclude the baseline period
tmax=2
epochs.load_data()
con, freqs, times, n_epochs, n_tapers = spectral_connectivity(
epochs, method='pli', mode='multitaper', sfreq=sfreq, fmin=fmin,
fmax=fmax,
faverage=True, tmin=tmin, tmax=tmax,mt_adaptive=False, n_jobs=1)
Regards
Rodney
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://mail.nmr.mgh.harvard.edu/pipermail/mne_analysis/attachments/20201104/1e05474c/attachment-0001.html
More information about the Mne_analysis
mailing list